60. Permutation Sequence

2019/11/06 Leetcode

60. Permutation Sequence

Tags: ‘Math’, ‘Backtracking’

The set [1,2,3,...,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order, we get the following sequence for n = 3:

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note:

  • Given n will be between 1 and 9 inclusive.
  • Given k will be between 1 and n! inclusive.

Example 1:

Input: n = 3, k = 3
Output: "213"

Example 2:

Input: n = 4, k = 9
Output: "2314"

Solution

方法1: 暴力,next permutation 执行k次, $O(nk) O()$

方法2:“康托算法” leetcode 解释

注意 k = k-1 来处理 $k\%(n-1)! = 0$ 的情况

public String getPermutation(int n, int k) {
    StringBuilder sb = new StringBuilder();
    List<Integer> nums = new ArrayList<>(); // for number loop up
    int factorial = 1;
    for (int i = 1; i <=n; i++) {
        factorial = factorial * i;
        nums.add(i);
    }
    
    k = k-1; // starting index of 0
    for (int i = 0; i < n; i++) {
        factorial = factorial/(n - i); // current grouping size
        int index = k / factorial;     // k / factorial
        sb.append(nums.remove(index)); // remove and append to sb
        k = k - index * factorial; // residual, which is k % factorial
    }
    
    return sb.toString();
}

Search

    Table of Contents