516. Longest Palindromic Subsequence
Tags: ‘Dynamic Programming’
Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"Output:
4One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"Output:
2One possible longest palindromic subsequence is "bb".
Solution Iterative
$O(n^2)$ time $O(n^2)$ space
dp[i][j]
: the longest palindromic subsequence’s length of substring(i, j)
where i
, j
represent left, right indexes in the string
State transition:
if s.charAt(i) == s.charAt(j)
dp[i][j] = dp[i+1][j-1] + 2
otherwise dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1])
Initialization: dp[i][i] = 1
public int longestPalindromeSubseq(String s) {
int[][] dp = new int[s.length()][s.length()];
for (int i = s.length() - 1; i >= 0; i--) {
dp[i][i] = 1;
for (int j = i + 1; j < s.length(); j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i+1][j-1] + 2;
} else {
dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
}
}
}
return dp[0][s.length() - 1];
}
Solution recursive
public int longestPalindromeSubseq(String s) {
return helper(s, 0, s.length()-1, new Integer[s.length()][s.length()]);
}
private int helper(String s, int i, int j, Integer[][] memo) {
if (memo[i][j] != null) return memo[i][j];
if (i > j) return 0;
if (i == j) return 1;
if (s.charAt(i) == s.charAt(j)) {
memo[i][j] = helper(s, i+1, j-1, memo) + 2;
} else {
memo[i][j] = Math.max(helper(s, i+1, j, memo), helper(s, i, j-1, memo));
}
return memo[i][j];
}