516. Longest Palindromic Subsequence

2019/10/23 Leetcode

516. Longest Palindromic Subsequence

Tags: ‘Dynamic Programming’

Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1:
Input:

"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".

Example 2:
Input:

"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".

Solution Iterative

$O(n^2)$ time $O(n^2)$ space

dp[i][j]: the longest palindromic subsequence’s length of substring(i, j) where i, j represent left, right indexes in the string

State transition:

if s.charAt(i) == s.charAt(j) dp[i][j] = dp[i+1][j-1] + 2

otherwise dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1])

Initialization: dp[i][i] = 1

public int longestPalindromeSubseq(String s) {
    int[][] dp = new int[s.length()][s.length()];
    
    for (int i = s.length() - 1; i >= 0; i--) {
        dp[i][i] = 1;
        for (int j = i + 1; j < s.length(); j++) {
            if (s.charAt(i) == s.charAt(j)) {
                dp[i][j] = dp[i+1][j-1] + 2;
            } else {
                dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
            }
        }
    }
    return dp[0][s.length() - 1];
}

Solution recursive

public int longestPalindromeSubseq(String s) {
    return helper(s, 0, s.length()-1, new Integer[s.length()][s.length()]);
}

private int helper(String s, int i, int j, Integer[][] memo) {
    if (memo[i][j] != null) return memo[i][j];
    if (i > j) return 0;
    if (i == j) return 1;
    
    if (s.charAt(i) == s.charAt(j)) {
        memo[i][j] = helper(s, i+1, j-1, memo) + 2;
    } else {
        memo[i][j] = Math.max(helper(s, i+1, j, memo), helper(s, i, j-1, memo));
    }
    return memo[i][j];
}

Search

    Table of Contents